Performance of a Remote Instrumentation Program

Michael Kupfer

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

One application of distributed computing is remote system instrumentation.
Such instrumentation programs require good response with low overhead to pro-
vide timely results without disturbing the system being measured. A remote pro-
cedure call system, such as the Circus system developed at Berkeley, allows pro-
grammers to write distributed programs with little more effort than is required to
write local programs. This paper compares a Circus-based implementation of a
Berkeley UNIXt tool (vmstat) with one based on the byte-stream protocol TCP.
The Circus version makes for much cleaner code, but it requires more start-up
time and higher CPU overhead than the TCP version. We conclude that the
present incarnation of Circus is not acceptable for our work, but that future ver-
sions of Circus should prove valuable.

1. Introduction

One application of distributed computing is remote instrumentation, which allows a user on
one machine to monitor the performance of a different machine without logging on to that
machine. Such a program consists of at least two processes: a data-gathering server process on
the remote machine, and a data-displaying client process on the local machine. If only one server
process is used, it multiplexes connections to all its clients. An alternative is to give each client
process its own server process.! In either case the communication system seen by the client and
server clearly must guarantee the accuracy of a delivered message. In addition, we feel that the
communication system should guarantee message delivery. A dropped message affects the client as
though the remote machine had suddenly slowed to a crawl. Thus dropped messages would
unnecessarily annoy users and possibly confuse analysis programs. This problem would be toler-
able if messages were infrequently lost. Unfortunately, casual instrumentation of Ethernet inter-
faces has shown input error rates (hence, dropped packets) of 50-100 or more per hour, which is
simply too high to ignore.

Furthermore, we want a communication system that is general enough that we can easily
write distributed versions of existing tools or write new distributed tools from scratch. However,
the communication system should also provide adequate performance in at least two areas: pro-
gram ipitialization and system overhead. Program initialization should be fast because we

t UNIX is a trademark of Bell Laboratories.

This work was sponsored in part by the Defense Advanced Research Projects Agency (DoD), ARPA Order No.
4031, monitored by the Naval Electronics Systems Command under contract No. N00039-C-0235. The views
and conclusions contained in this document are those of the author and should not be interpreted as represent-
ing official policies, either expressed or implied, of the Defense Research Projects Agency or of the US Gover-
ment. Additional support was provided by the State of Californisa MICRO program, grant number 532422 -
19000.

1 Either technique allows the client the option of talking to multiple servers.

11 February 1985

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
FEB 1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Performance of a Remote | nstrumentation Program 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

One application of distributed computing isremote system instrumentation. Such instrumentation
programsrequiregood response with low over head to provide timely results without disturbing the system
being measured. A remote procedure call system, such asthe Circus system developed at Berkeley, allows
programmersto write distributed programswith little more effort than isrequired to write local
programs. Thispaper compares a Circus-based implementation of a Berkeley UNIX tool (vmstat) with one
based on the byte-stream protocol TCP. The Circus version makesfor much cleaner code, but it requires
mor e star t-up time and higher CPU overhead than the TCP version. We conclude that the present

incar nation of Circusisnot acceptable for our work, but that future versionsof Circusshould prove
valuable.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 19
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

-2.

sometimes want the monitoring tools to tell us what is bappening now, not what is happening 10
seconds from now. Long-term system overhead should be low enough that the tools can provide
relatively long traces without disturbing the system being measured (e.g., less than 1% of the
CPU should be used for the instrumentation program, and it should not cause any significant
change to the system's swapping or paging behavior). For the same reason, short-term
overhead—which we will not consider in this paper—should also be low. However, short-term
overhead will be somewhat higher than long-term overhead because of initialization costs and
because new UNIX processes usually get higher priorities than older ones.

One reliable and general communication mechanism is the remote procedure call (RPC),
which by and large allows the application programmer to ignore the distributed aspects of the
program. Eric Cooper's Circus [Cooper 84a, Cooper 84b], which is based on Xerox's Lupine sys-
tem |Birrell 83}, is a remote procedure call system that runs under Berkeley UNIX 4.2BSD. Circus
differs from an earlier Berkeley UNIX RPC system [Larus 83] in that it is based on datagram ser-
vice rather than on virtual circuits.

This paper evaluates the performance of a Circus-based version of vmstat? by comparing it
with an implementation based on the byte-stream protocol TCP [TCP 81]. In the following sec-
tion we present a brief introduction to what a programmer works with when using Circus and
TCP on a 4.2BSD system. Section three describes the performance tests that were used. The
results of these tests are described in section four, and an analysis of the results is in section five.
In section six we present our conclusions, in section seven we suggest additional research, and in
section eight we summarize the paper. Appendices A and B contain sample code from the Circus-
and TCP-based programs (both client and server), with an emphasis on the differences between
the two approaches.

2. Programmer's View

Circus provides the UNIX programmer with a set of facilities that are like Lupine's, except
that some changes were necessary for compatibility with the Berkeley UNIX environment. First
the programmer defines an interface of types, global variables, and procedure headings using a
Mesa-like language derived from Xerox’s Courier specifications [Mitchell 79] [Courier 81]. From
this interface the rig compiler generates C code [Kernighan 78] for the server and client stubs, as
well as a header file that contains C definitions for the types and variables specified in the inter-
face. The programmer codes two programs, one for the client and one for the server. Taken
together, these two parts differ little from a modular non-distributed version of the program.
Most of the differences are embodied in a small amount of code that manages such chores as bind-
ing the client to the server. A run-time library and the client and server stubs handle communica-
tion between the client, the ringmaster binding process (which corresponds to Grapevine in the
Xerox world), and the server. A programmer using Circus also has the opportunity to program-
matically type-check the client/server interface with the UNIX program lint. Relevant portions of
the Circus-based vmstat are in Appendix A.

As part of its Interprocess Communication (IPC) facilities [Leffler 83], 4.2BSD provides the
UNIX programmer with TCP service. In contrast with using Circus, a TCP-based program
requires no extra paraphernalia such as rig (the stub compiler). The price is that the programmer
must do more work, such as explicitly opening a connection between the client and server and
managing 1/O errors. To handle multiple clients simultaneously, the server must either multiplex
its connections or fork off a new server process to handle each new client. If there is a server pro-
cess for each client, then the client bears the additional burden of telling its server to exit when it
(the client) is ready to quit. At best, this additional work is merely an annoyance; at worst, it
provides ample opportunity for programming mistakes. An additional problem with using TCP is
that there is no way to verify the type-correctness of the client and server communication rou-
tines, other than checking the individual read and write statements by hand (which is also liable
to mistakes). Relevant portions of the TCP-based vmstat are in Appendix B.

2 ymstat produces statistics about the virtual memory subsystem in Berkeley UNDX

11 February 1985

-3-

Thus, the most immediate advantage of Circus is its ease of use. Another expected advan-
tage results from Circus’ use of datagram communication: we expect lower start-up overhead from
using Circus than we do from using a byte-stream protocol like TCP. An expected disadvantage
of Circus is that its generality may make communication slower. For example, Circus allows
transparent communication between different machine types, which may lead to unnecessary
message-copying or format conversion in the case where both machines are of the same type. A
realistic TCP-based implementation would also bave to deal with this heterogeneity problem, but
it may be possible to hand-tune the communication code to obtain greater efficiency than is possi-
ble with Circus.

In short, according to our introductory criteria for a distributed monitoring tool, we expect
that Circus would make an excellent tool for writing remote instrumentation programs if we could
obtain adequate performance from it.

3. The Tests

We propose two types of performance tests: one test measures the elapsed start-up time
required by a program; the other test measures the long-term CPU utilization of a program. The
point of the start-up test is that any useful instrumentation utility must provide quick service
without high initialization costs. The point of the utilization test is that any useful instrumenta-
tion utility must not significantly disturb the system it is measuring.

Our first test consisted of running a program that, invoked vmstat 300 times and recorded
the accumulated execution time. We performed this test on a VAX2 750 with 2 megabytes of
physical memory running in single-user mode. In one case we performed the test 10 times with no
competing load, and in 3 second case we performed the test 10 times while competing with a load
of seven simulated ‘‘active” users.4

The second test consisted of causing vmstat to iterate (display one line of statistics) 10,000
times at 5-second intervals. When the test finished, both the client and the server recorded infor-
mation such as their elapsed times and CPU usage. We ran this test 7 times on a VAX 780 with
4 megabytes of memory, at various hours of the day and night, without attention to machine
load. We also ran a similar test—using 20,000 iterations instead of 10,000—to verify that we
could extrapolate our results to times longer than a day. We picked 5 seconds as the interval
length because the Berkeley UNIX kernel updates its virtual memory statistics at 1- and 5-second
intervals. We did not repeat the tests using a 1-second interval because, as we shall see in the
next section, the CPU utilization at the 5-second refresh rate was high enough that additional
tests seemed pointless.

4. Results

The results of the first test are summarized in Table 1. Each number represents an average
start-up time in seconds. We also repeated the start-up tests 3 times with the original (single-
process) version of vmstat for rough comparison purposes.

Table 1: Start-up times for TCP- and Circus-based versions

version | with load no load
Circus 4.63 1.36
TCP 1.14 0.708
original 10.2 2.04

Table 2 gives the results for the second test. We obtained these numbers by compiling code
into the vmastat client and server so that each program recorded its elapsed (‘‘wall-clock™) running

3 VAX is a trademnark of Digital Equipment Corporation.
4 Each user was simulated by a shell script that repeatedly did tasks such as compilation, editing, and file
copying.

11 February 1985

-4-

time and its system and user CPU requirements. We calculated the “percent of system used’’ as
the sum of the CPU time used divided by the elapsed time. Notice, however, that we ignore the
requirements of ringmaster (the binding process) for the Circus version, and we ignore certain
one-time start-up costs for both versions. Again, we also repeated the test a few times with the
original vmstat for rough comparison purposes.

Table 2: Long-term CPU utilization

system time user time % of system

(sec) (sec) used
Circus client 332.4 190.6 1.01
Circus server 4374 123.6 1.09
Circus (total) 2.10
TCP client 50.3 108.7 0.32
TCP server 176.6 470 0.44
TCP (total) 0.76
original (total) 97 117 0.44

5. Analysis
Having seen these results, we now must interpret them.

§.1. Start-up Delay

Table 1 shows that the TCP version of the program consistently starts up faster than the
Circus version. This result may seem surprising, as byte-stream protocols have 2 reputation for
high overhead in establishing connections. However, the protocol-related activities may only be a
small part of all the program’s activities. Using the gprof profiler |Graham 82], we see that for
one run of 100 iterations, the TCP-based client spends 30 ms (1% of its total CPU time) estab-
lishing a connection; the Circus-based client requires less than 10 ms (0.2%) of CPU time to con-
pect to the server. However, to find a server, the Circus-based client must send a message to ring-
master and then wait for a reply, which is entirely transparent to gprof and is presumably slow.
Contrast this with the TCP-based version, which spends 100 ms looking up the server’s Internet
address in a well-known file. Thus, we hypothesize that the Circus-based client process requires
less CPU time than the TCP-based client, but it requires more elapsed time because of client-
server binding.

Both versions are much faster than the original version of vmstat. We obtain this savings
because the original version does an nlist, which tells where the interesting numbers live in kernel
memory, each time it is invoked. Both of the experimental versions do only one nlist, when the
server is started up, and they re-use that information when a new client executes. Thus the com-
parison between the original and experimental versions is biased, but it points out an advantage of
using the client/server paradigm for UNIX instrumentation programs.

§.2. CPU Utilization and Steady-State Delay

As with the first test, the Circus version performs worse than the TCP version: it uses about
3 times as much of the CPU as the TCP version does. There are many causes for this diflerence,
some of which are inherent to an RPC system, some of which result from Circus’s design, and
some of which result from Circus’s implementation, which is untuned and entirely at the user
level. One inherent problem of the RPC-based system is that it must send a message to the
server for every information message that the server sends back. In the TCP-based system, the
server just keeps sending information until the client sends one message ending the link. Gprof
analysis suggests that the Circus-based client can spend up to 14% of its time (ie., 0.14% of the
CPU) just sending these request messages. Also, the Circus-based version incurs extra byte-
copying costs (compared with the TCP-based version) in parameter passing. This copying comes

11

-5-

from moving whole structures around; the TCP-based version just moves pointers.

There is another problem that is not inherent to RPC systems in general but which results
from Circus's charter as a reliable remote procedure call system. Circus allows more than one
process to export a given service. When a client makes a remote call, the client stub sends
requests to all servers that export that call and uses a voting scheme to determine the result that
it returns. Circus does provide a mechanism that allows the client to specify which server (or
servers) to use. However, the techniques necessary to handle communication in the general case
(multiple servers) can have appreciable cost even when only one server i8 called. Thus remote
instrumentation programs, which do not need this replication mechanism, must bear this added
cost when using Circus.

The lack of tuning in Circus leads to problems such as unnecessary malloc (memory alloca-
tion) calls, expensive queueing operations, and unnecessary copying. The mallocs are done at each
call, when the client stub allocates and returns buffer space. The stub could avoid these problems
by maintaining its own pool of buffers. The queueing operations, which support communication,
could probably be made less expensive by using register variables [Kernighan 78]. Although any
general-purpose communication mechanism must provide machine independence, it seems reason-
able for the stubs to recognize that they are running on compatible architectures and agree to use
that architecture's data format, rather than wasting cycles converting to and from some general-
purpose format.5

There are two good reasons for putting Circus's reliable, procedure-oriented communication
protocol in the kernel.® Because Circus runs entirely in user space, it must implement timeouts
using the alarm library routine, which means that Circus preempts SIGALRM signals. The first
problem is that this preemption forces users who want an alarm-clock function to use an
inefficient kludge. The second problem is one of performance. When the stub sends off a request,
it must make at least four system calls: the first call sends the request, the second call sets the
alarm, the third call (select) waits for a reply from any of the servers, and the fourth call finally
reads in the result. Each additional server requires two additional system calls. A kernel-based
implementation of Circus would avoid both of these problems.

6. Conclusions

The purpose of the preceding tests was to evaluate a Circus-based remote instrumentation
program. These tests lead us to conclude that Circus’s current incarnation is not ready for use in
production programs. The problem is not the slower elapsed start-up time of the Circus-based
version, which is negligible (and certainly faster than the original version of vmstat). A more seri-
ous problem is the CPU overhead that Circus requires, which is twice our 1% guideline. For-
tunately, tuning the performance of Circus, removing the replication mechanisms, and moving the
communication code into the kernel should solve this problem. We predict that once this task has
been done, Circus will be an excellent tool for distributed monitoring programs. In the meantime,
programmers will have to balance their desperation for such a distributed program against the
pain of writing a program based on TCP.

7. Additional Research

While this paper provides generally encouraging results, additional work should be done to
confirm our optimism. In particular, we would like to repeat these tests using the non-replicated,
kernel-based version of Circus being developed by Karen White {White 85|, after it has been as
thoroughly tuned as the Berkeley UNIX TCP implementation.

Furthermore, there are metrics other than the ones that we have chosen. The most obvious
candidate for additional testing is memory usage. A server with a large working set size (e.g.,

& The design for & new version of Circus includes this stub-to-stub bandshake and a fix for the buffer space
problem.
6 “reliable” as in “guaranteed delivery of uncorrupted data,” not as in “replicated.”

11 February 1985

-6-

from buffer requirements) will certainly disturb the system which it is trying to measure, even if
its measured CPU utilization is low.

8. Summary

Having identified an interesting class of distributed computing programs (remote instrumen-
tation), we have decided on certain performance requirements and a possible technique for writing
programs that belong to that class (remote procedure calls). We have built a realistic example
program using this technique (by modifying vmstat), and we have obtained encouraging results by
comparing this example program with a version based on a different technique (TCP). We expect
that as Circus, a UNIX implementation of this technique, is refined, it will compare favorably with
its competitors.

9. Acknowledgements

Thanks are owed to Eric Cooper, Circus’ creator, for making Circus available and answering
many questions. Thanks are also owed to Edward Hunter, Bart Miller, and assorted others for
their comments and suggestions.

10. References

[Birrell 83
A. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Transactions on

Computer Systems, Volume 2, No. 1, February 1984.

[Cooper 84a]
E.C. Cooper. Circus: A Replicated Procedure Call Facility. Proceedings of the 4th Sympo-
sium on Reliability in Distributed Software and Database Systems, October 1984.

[Cooper 84b]
E.C. Cooper. Mechanisms for Constructing Reliable Distributed Programs. Ph.D. disserta-
tion, Computer Science Division, University of California, Berkeley. In preparation.

[Courier 81]
Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System Integra-
tion Standard 038112, December 1981.

[Graham 82]
S.L. Graham, P.B. Kessler, and M.K. McKusick. Gprof: A Call Graph Execution Profiler.
Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 17, No. 6, pp. 120-126, June 1892,

[Kernighan 78]
B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall, New Jer-
sey, 1978.

[Larus 83
J. Larus. On the Performance of Courier Remote Procedure Calls Under 4.1c BSD. Report
No. UCB/CSD 83/123, University of California at Berkeley, August 1983.

[Leffler 83]

S.J. Leffler, R.S. Fabry, W.N. Joy. A 4.2bsd Interprocess Communication Primer, draft of
July 27, 1983. Computer Systems Research Group, University of California, Berkeley, 1983.

[Mitchell 79}
1.G. Mitchell, W. Maybury, and R. Sweet. Mesa language manual (Version 5.0). Technical
Report CSL-79-8, Xerox Palo Alto Research Center, 1979.

[TCP 81]
Transmission Control Protocol. RFC 793, Information Sciences Institute Marina del Rey,
California, September 1981.

11 February 1985

[White 85]
K. White. Untitled M.S. report, Computer Science Division, University of California,

Berkeley. In preparation.

11 February 1985

Appendix A: portlons of the Clrcus-based
Q(# vmatat.rig 12 10/18/34
vinstat = begin

— The following block is from <sys formmeter.h>:

vmmeter: type = record |

k

v_swich: long cardinal,
v_trap: long cardimal,
v_sysaal: lomg cardimal,
v_intr: long cardinal,
v_soft: long cardimal,
v_pdma: long cardinal,
v_pswpin: long cardimal,
v_pswpout: loag cardimal,
v_pgin: long eardinal,
v_pgout: long cardimal,
v_pgpgin: long cardinal,
v_pgpgout: long cardimal,
v_intrans: long cardinal
v_pgrec: long cardinal,
v_xsfrec: long cardinal,
v_xifrec: long eardimal,
v_exfod: long cardinmal,
v_rfod: lomg cardiaal,
v_vriod: long cardinal,
v_nexfod: long cardinal,
v_nzfod: lomg cardimal,
v_ovrfod: long cardinal,
v_pgirec: long cardinal,
v_faults: long cardinal,
v_scan: long cardinal,
v_rev: long cardinal,
v_seqfree: long cardimal,
v_dfree: long cardinal,
v_fastpgrec: long cardimal,
v_swpin: long cardinal,
v_swpout: long cardinal

vmtotal: type = record |

t_rq: integer,

t_dw: integer,

t_pw: integer,

t_sl: integer,

t_sw: integer,

t_vm: long integer,
t_avin: long integer,
t_rm integer,

t_arm: integer,
t_vmtxt: long integer,
t_avmtxt: long integer,
t_rmtxt: integer,
t_armtxt: integer,
t_[ree: integer

{end of <sys frmmeterh>)

The following Bock is from <sys fornsystm.h>:

forkstat: type = record |

catfork: lomg integer,
cntvfork: long integer,

vmstat

sizfork: long imteger,
sizviork: long imteger

k
: (end of <sys fomeystm A >)

doubleFloat: type = array 2 of long imteger;

CPUSTATES: imteger = 4; — from <sys/dkA>
DK_NDRIVE: integer = 4; — from <sys/dkA>
VMSTATS: type == record | — package of virtusl memory stats

busy: long integer,

time: array CPUSTATES of long imteger,
xfer: array DK_NDRIVE of loag integer,
Rate: vmmeter,

Total: vimtotal,

Sum: vmirmeter,

Forkstat: forkstat,

rectime: lomg cardinal,

pgintime: lomg cardimal

k

disk_drive: type = record | — snfo for disk drives
pame: striag,
unit: imteger

k

Time_t: type = long integer; —— seconds since 1jenT0

vin_init: type == record [—— initial message to dient
drive: array DK_NDRIVE of disk_drive,
bz: long integer, —— dock rate
phz: lomg integer —— profiling dock ratef

L

vm_info: type = record [— regular VM state nfo
time: Time_t, —— time that numbers were gotiten
s: VMSTATS,
deficit: long integer, — anticipated memory deficit
etime: doubleFloat,
nintv: lomg integer —— stats collection interval

vmstat_info: procedure [firstCall boolean] returas
{infoPkt: vm_info);

vmstat_init: procedure returas [initPkt: vim_init};

end.

- 10 -

#ifudef lint
static char %ccsid2 == "O(#)vmstat.c 2.7.1.2 (kupfer Aest) 4/14/84";
Pendif

#inclade <sys/paramb>

#include <stdioh>

#include <strings.h>

#inclade <sys/Amh>

#inclade <sys/dk.h>

#include "vmstat_defsh”

#define HOSTNSIZE 256 /* host name oize *°/
#define YES 1

#define NO 0

int HZ,

char host[HOSTNSIZE}; /* name of the host we want to talk to */
ansigned stime; /" Sleep time between refreshes °/

vm_init initPkt; /* snit packet */

vm_info infoPkt; /* info packet for one call ¢/

#define INTS(x) ({(x) = (hz + phi))

® Prini VM statistics, wsing & remote server to collect the data.

* Uses Eric Cooper’s Circus for RFC.
*

main(arge, argy) main
int argc;
char *‘argv;

int lines; /? count lines for headering */
int iter; /* number of iterations to make °/
extern char _sobuff);

boolean firstCall; /* flag for 1st call to server °/

if (arge > 1 && stremplargvl), "—t") === 0) {
set_trace_flags(argv[2]);
arge —== 2;
argy +w= 2;

}

setbuf(stdout, _ sobuf);

stime == §; /® default sleep time */
(void) gethostname{host, HOSTNSIZE); /* default host: us 74
arge——, Argv++4;

Vad
* Figure out how many iterations to make end how long for each
* refresh. If no numbers were given, only iterate 1 time. I
* only a refresh interval was given, iterate forever. Otherunse,
* the user will tedl us how many times to iterate.
'/
if (arge < 1)
iter == 1;
else {

stime == atoiargvio]);
if (arge meem 1)

iter == 0; /* dose enocugh to infinity... */
else

iter == atoi{argv(1]);

- 11 -

* Import the vmstst interface snd get I—time info about the dock
* sate and dnves.
*/
set_troupe_list(1, host);
if (limport_vmstat()) {
fprintf{stderr, "can’t import vmstat\n”);
exit(1);
}
ipitPkt == vmstat_ini();

HZ == initPkt.phs ? initPkt.phs : initPkt.hs;
firstCall = YES;

reprint:
lines == 20;
printf("\
procs memory %—18.18s page disk faults cpu\n\

rbw avm fre reat pi po fr de st %e%Bd Bctd %c%Bd %c%d in sy cs us sy id\o”,
bost,

initPkt.drive[0].namel0], initPkt.drivel0].unit,

initPkt.drive[1].name[0], initPkt.drive(1].unit,

initPkt.drive{2].name[0], initPkt.drive[2].unit,

initPkt.drive|3).name[0}, initPkt.drive[3}.unit);

Joop:
infoPkt == vmstat_info{firstCall);
firstCall = NO;
displayinfo{ &infoPkt);
if (—iter === 0) {
exit{0);

go_to_sleep(stime, 0); /* (Zero microseconds) */
if {—lines <= @)

goto reprint;
goto loop;

- 12 -

ffifadef lint
static char scesid] == "Q@(#)vmstatd.c 3.8.1.2 (kupfer Aest) 4/14/847;
Sendifl

#inclade <stdioh>
#inclade <strings.h>
#include <sysfoctlh>
#inclade <sys/parambh>
#inclade <sysAileh>
#include <sysAmh>
#include <sys/dk.h>
#inclade <nlisth>
#inclade <sysbufh>
#include <sys/Anith>
#include <sysAimeh>
#include <sys/fresource.h>
#ifdefl vax

#include <vaxuba/ubavarh>
#include <vaxmba/nbavar.h>

fendif
#include "vmstat_defs.h”
#define YES 1
#defime NO 0
Vad
* This program eimply provides subroutines whick the dient calls vis sn
* RPC mechanism. Vmstat_snit sa called once (per dient), so the! we
* don’t waste time retranermtiing repetitious information (eg., dock
* rate). After that, vmstat_sinfo is colled every time & cient wants new
* information.
'/
exterm int errno;
unsigned stime=I,; /° interval between refreshes */
time_t boottime;
vm_info avglnfo; /° boottime to now everages */
vm_info runninglnfo; /* running rates */
vm_init initPky; /* packet of init info */
vm_info infoPkt; /* packet of regular info °/
time_t lastRefresh=0; /* time of last refresh °/
time_t now; /? (the current time} */
main(arge, argv) mawm
int argc;
char ‘argvj;
{
int i
time_t initialize();
if (arge > 1) .
stime == atoi(argvit]);
boottime == initialize(); /* get dock, disk drive info */
refresh(); /° read 1st set of values */

if (lexport_vmstay()) {
fprintf{stderr, "can’t export vmstat\n”);
exiy(1);

/7

* Disassociate oursdves from our parent. This ss especially
* needed if you use rsh to stert up the server.
*/

#ifndef poOrphan

.18 -

s
Fendif

server_loop();

® Get the namdist for the kernd end do any one—time reading of kemd
* memory. Relurmn the system boot time, end et ‘now® to be the current
* time.
*/

time_t

initialize{)

{

VA 4

}

® Send initial datas to the dient: dock rate and disk info.
* Be sure to update our buffers if we Asven‘t been called in & long
* time.

*/
vim_init
vmstat_ini()
{
if (time(&now) — lastRefresh >== stime) {
lastRefresh == now;
refresh(};
return(initPkt);
}

* Send & message with the emstat info in . The argument specifies
* whether this te the dient’s first call. If it is, the server should
* give average numbers {averaged since system boot). Otherunse,
* the server should give the going rate.
*/
vm_info
vrstat_info(firsteall)
boolean firstcall;

{
if (time(&now) — lastRefresh > stime) {
lastRefresh == now;
refresh();
}
if (firstcall)
beopy{ &avglnfo, &infoPkt, siseof(vn_info));
else
beopy(&runninglofo, &infoPkt, sizeof(vm_info));
retara(infoPkt);
}

® Refresh the %augInfo” and Yrunninginfo® buffers. Uses the global
¢ current time ("now").
)

refresh()

{

time_t interval;

interval = pow - boottime;
getinfo(interval, &avglnfo, &runninglafo);

inttialize

vmstat_tnit

vmstat_info

refresh

- 14 -

Appendix B: portions of the TCP-based vmstat
/* G(#umatat.h se s/12/84 */

#define VMSTAT_EXIT X° /* message: kill the current connection */
#define ERRLOG "vmstatd.errlog” /* error log for the server daemon °/

typedefl struct

{
int busy;
long time[CPUSTATESY};
long «fer[DK_NDRIVE};
struct vmmeter Rate;
struct vmtotal Total
struct vmmeter Sumyg
struct forkstat Forkstat;
unsigned rectime;
unsigned pgintime;

} VMSTATS;

* The variables in the following block are &ll sent to the dient et
* one time or another.
*/

char dr_name[DK_NDRIVE](10};

char dr_unit[DK_NDRIVE};

int phz;

int hz;

VMSTATS s;

time_t now; /* time that we read from [devfemem °/
int deficit;

double etime;

unsigned stime; /* sleep time as specified by command line */
int nintv; /* now — boottime (1st pass only)®/
#define rate s.Rate

#define total s.Total

#define sum s.Sum

#defime forkstat s.Forkstat

* INITBUFSIZE is the num of bytes needed to buffer the initialization dats:

4 dr_name, dr_unit, phz, and Az
* MESGBUFSIZE is the num of bytes needed to buffer one message:
’ now, s, deficit, etime, and nintv.

.

#define INITBUFSIZE (10°DK_NDRIVE *siseof(char) + DK_NDRIVE *siseof(char} \
+ siseoflint) + siseof{int))

#define MESGBUFSIZE (siseof(time_t} + sizseof{VMSTATS) + siseof(int) \
+ sizeof{double) + sizeoflint))

char vins_initbuf[INITBUFSIZE);
char vims__mesgbuf[MESGBUFSIZE];

- 15 -

fifadef lint

static
dendif

Finclade
#include
#inclade
#include
#include
#include
finclade

#include
finclade

char %ccsid2 == "O(f#)}vmstat.c 2.8 (kupfer Aest) 4/12/84";

<sys /paramb>
<signalh>
<netdb.h>
<stdio.h>
<strings.h>
<sys Amh>
<sys fdkh>

<& sys fsocketh>
"vmstat.h”

#define HOSTNSIZE 100 /® host name size */
f#define YES 1
ddefine NO 0

imt
char
int

fdefine

HZ,
host(HOSTNSIZE]; /? name of the host we want to talk to */
sock; /? socket for talking to the server */

INTS(x) ((x) — (bs + phi))

* Print VM statistics, wsing & remote server to collect the dats.

’

main{arge, argv)

int arge;

char *argv;

int lines; /® count lines for headering */

imt iter; /® number of iterations to make */

extern char _sobuff);

struct hostent *hp == NULL; /" points to host description */
imt sockopen(); /* opens & socket connection to the server °/
int quiy);

{void) signal(SIGINT, quit); /* otherunse server dumnpe core */

{void) signal(SIGHUP, quit);
setbuf(stdout, _sobuf);

stime == §;
(void) gethostname(host, HOSTNSIZE),
host{HOSTNSIZE—1) = '\0';

hp = gethostbyname{host); - /® (default == host we're on) */
arge——, argv-+;
/*

* Figure out how many sterations to make and how long Jor each
* cefresh. If no numbers were given, only iterate 1 time. If
only & refresh interval was given, iterate forever. Otherwise,
the user will tell us how many times to iterate.

*/

if (arge < 1)
iter == I;

+ ®

else {
stime = stoi(argvo]);
if (arge === 1)
iter == O; /* dose enough to infinity... */
else
iter == atoi{(argvl])

}

sock == sockopen(hp, "vmstat™);

main

- 16 -

* Tell the server how long to sleecp and get initial (1—time)
* info.
L J

write(sock, (char *)&stime, sizeof stime);

recv_init(sock);

HZ == phs ? phs : hs;

reprint:
lines == 20;
priotf("\
procs memory %—18.18¢ page disk faults cpu\n\

rbw avm fre reat pi po fr de st %c%d %c%d %BcRd %c%hd
host,

dr_namefo]lo], dr_unitfo)], dr_namef1}{0], dr_unitf1],

dr_name[2][o], dr_unit|2], dr_pame[3j0], dr_unit[3]);

loop:
recvinfo(sock);
displayinfo();
if (——iter w=m 0) {
cleanup{sock});
exiy(0);

}

if (—lines <= 0)
goto reprint;

goto loop;

® Catch a SIGINT and quit.
*/

in gy cs us sy id\n”,

quit() quit
{
cleanup(sock);
exit(0);
}
* Tell the server that we are done; flush any dats remaining n
* the connection.
.
char quitnow] == VMSTAT_EXIT; /* mesvage to dose the connection */
cleanup(asock) cleanup
imt asock; /? the socket we’ve been weing®/
{
char fbuf{4096); /* buffer for flushing the connection */

if (send(asock, quitnow, siseof{quitnow), MSG_OOB) < 0) {
perror{"vimstat: sending quitnow”);
exiy(1);

}

while (read(asock, fbuf, siseof fbuf) > 0)

(void) cMe'(asock);

- 17 -

ffifadef lint
static char sccsid]] = "O(#)vmstatd.c 3.0 (kupfer Aest) 4/12/847;
shendif

#include <signalh>
#inclade <sysAimeh>
#include <sysAieh>
#include <netdb.b>
#include <stdio.h>
#include <sysAoctlh>
#include <sys/paramb>
#include <petinet /Anh>
#include <errno.b>
#include <sys/focket.h>
#include <sysAmb>
#include <sys/dk.bh>
#inclade <alist.h>
#include <sys/bulh>
#include <syswith>
#include <sysfresource.h>
#ifdefl vax

#include <vaxubafubavarh>
#inclade <vaxmbs/mbavarh>
Fendif

#include <strings.h>
#include “vmstath”
#define YES 1

#define NO 0

/

* This program creates & socket, does some initial reading of the

* kerned memory, and then begins an infinite loop.

* Each time through the loop st sccepls & connection and forks off

* o child to manage it. The child simply sends vmatat numbers thru st
* When the dient tells the child to quit, the child closes the

* old connection and ezits.

*/
imt msgsock; /* the socket connecting with the dient */
extera int errno;
main() main
int i
int sock;
int reaper(); /® reape exit’d child processes */

time_t boottime;
time_t initialize();
imt servsock(); /* 1cts up & socket for the server */

sock == servsock(”vmstat™);
boottime == initialize(};
(void) signal(SIGCHLD, reaper);

/

* Disassociate oursdves from our parent. This is especially
* needed if you use rsh to start up the server.

#ifadefl noOr/phm
7

Feadifl

* Start accepling connections. The sccept might Jad §f we get
* interrupted by & child’s eziting. I this Aappens, Just try
* again. In case of en unczpected error, we pause Jirst before

- 18 -

* retrying. There i & B—fold motive for this: (1) given some
® breathing room, mapbe the keme will get sts &ct together and
® then we won’t get the same error again. (£) at least the error
* log file won't grow so repidly.

4
(void) listen (sock, §);
for (i) {
msgsock == accept(sock, (struet sockaddr %0, (im¢ *)0);
if (msgock < 0) {
if (errno !== EINTR) {
perror(”vmstatd: sccept”);
sleep ((umsigmed) $5);
continuwe;
}
if (fork{) === 0) {
(void) close(sock); /7 (child) */
doTheDirtyWork{ boottime);
}
else
(void) close(msgsock);
}
}
* Wast untsl & child process exits.
reaper()
{
umiom wait status;
while (wait3(&status, WNOHANG, (struct rusage %0) > 0)
} ’

® Get the nameist for the kemd and do any one—time reading of
* kernd memory. Retumn the system boot time.

*/

time _t

initialize()

{

VAR IR/4

}

/”
* The child first reads the sleep time (ie, the sampling rate) and
* sends initial snformation such aa the device names, ther "unit’,
* and some dock info. It then recalculates how long it°s been eince
* systern boot (this is used once, s0 that we can get the long—term
* average rates since boot time; after that, we use the current rates).
*/

doTheDirtyWork{boottime)

time_t boottime; /? system boot time °*/

{

int oob(); /® catches SIGURG */

(void) signa}SIGURG, oob);
{int pid = —getpid();
(void) ioctimsgsock, SIOCSPGRP, (char %&pid);}

send_iniY();
read(msgsock, (char *)&stime, sizeof stime);

(void) time(&now);

nintv == pow = boottime;

reaper

initialize

doTheD:irtyWork

- 19 -

for (;) {
getinfo();
sendinfo();
sleep(stime);
nintv == 1; /® (for getinfo’s sake) *°/
}
}
® Catch & SIGURG: read in and process & message from the dient.
4
;ob() oob
char sbuffl];
{void) recv(msgsock, abuf, siseof abuf, MSG_OOB);
switch (abuffo]) {
case VMSTAT_EXIT:
{void) close{msgsock);
exit{0);
break;
default:
forintf(stderr, "vinstatd: unknown request: 0%o\n", abufo]);
break;
}
}
* Pgckage the collected info in « buffer and send st off to the dient.
.
sendinfof) sendinfo
{
char *bufp = vms_mesgbuf; /? points into the buffer */
beopy((char *)&now, bufp, siseof now);
bufp +== sizeof now;
beopy{(char *)&s, bufp, sizeof s);
bufp += sizeof s;
beopy{(char *)&deficit, bufp, sizeof deficit);
bufp += siseof deficit;
beopy{(char *)&etime, bufp, sizeof etime);
bufp +== sizeof etime;
beopy{(char *)&nintv, bufp, siseof nintv);
write{msgsock, vms_mesgbuf, MESGBUFSIZE);
}

* Move the device names and dock info into o buffer and then send st
* gl off to the dient.
*

send_init() send_init

{
char *ufp == vms_initbuf; /? points into the buffer */

beopy{dr_unit, bufp, siseof dr__unit);

bufp +== sizeof dr_unit;
beopy(&dr_namelo}[0], bufp, siseof dr_name);
bufp +== siseof dr_name;

beopy((char ®&hs, bufp, siseof hs);

bufp +== siseof bhs;

beopy((char *&phz, bufp, sizeof phz);

write{msgsock, vmms_initbuf, INTTBUFSIZE);

